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ABSTRACT

With the wide adoption of AI applications, there is a pressing need

of enabling real-time neural network (NN) inference on small em-

bedded devices, but deploying NNs and achieving high performance

of NN inference on these small devices is challenging due to their ex-

tremely weak capabilities. Although NN partitioning and offloading

can contribute to such deployment, they are incapable of minimiz-

ing the local costs at embedded devices. Instead, we suggest to

address this challenge via agile NN offloading, which migrates the

required computations in NN offloading from online inference to

offline learning. In this paper, we present AgileNN, a new NN of-

floading technique that achieves real-time NN inference on weak

embedded devices by leveraging eXplainable AI techniques, so as

to explicitly enforce feature sparsity during the training phase and

minimize the online computation and communication costs. Exper-

iment results show that AgileNN’s inference latency is >6× lower

than the existing schemes, ensuring that sensory data on embedded

devices can be timely consumed. It also reduces the local device’s

resource consumption by >8×, without impairing the inference

accuracy.
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Figure 1: Existing work vs. AgileNN

1 INTRODUCTION

Neural networks (NNs) have been used to enable many new appli-

cations, such as face and speech recognition [6, 32], object tracking

[5, 15], and personal assistants for business [66] and health [69].

With the penetration of these applications into our daily life, there

is a pressing need of enabling real-time NN inference on small

embedded devices, to allow more intelligent and prompt decision

making on these weak devices. For example, on-device data process-

ing on home security sensors [70] and industry actuators [1] will

allow prompt response to sporadic events, and real-time analysis of

human activity data on wearables could timely identify potential

health risks [3, 13]. Deployment of NN models on small drones and

robots is the technical foundation of these devices’ autonomous nav-

igation [7, 23], which is useful in many environment surveillance,

disaster rescue and military scenarios. Furthermore, real-time NN

inference, if made possible on energy-harvesting-powered sensors

[24, 33] and RF-powered devices [35, 47], could expand the current

horizon of AI to another magnitude.

Deploying NNs on these small devices, however, is very challeng-

ing due to the disparity between these devices’ weak capabilities

and NNs’ high computing demands. For example, the ResNet50

model contains 23 million parameters and 50 convolutional lay-

ers [28], and requires at least 100MB memory and a processor of

>2GHz to achieve 60ms inference latency on a smartphone [52].

Such amount of computing resources, however, is >10 times higher

than what is available on a STM32 microcontroller (MCU)1.

To eliminate such disparity, researchers aimed to reduce the NN

complexity via compression [18, 25] or pruning [27, 51] (Figure

1 - top left), which remove redundant NN weights and structures.

1The STM32 MCUs have been widely used on embedded sensors and actuators. The
STM32F746 MCU, for example, is equipped with an ARMCortex-M7 processor running
at 216 MHz and 320KB of local memory [2].
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Local comput. Memory Data Inference Training

complexity cost trans. cost accu. loss cost

Local Inference

Compression [18, 25] Very High High None High High

Pruning [27, 51] Very High High None High High

NAS [10, 44] High Medium None Medium Very High

Remote Inference
JPEG [62], MPEG [41] Low Low High Low Low

NN-favorable compression [45, 46] Medium Low Medium Medium Medium

NN Partitioning [31, 34, 36, 39, 42, 65] High Medium Low Low Medium

AgileNN Very Low Low Very Low Very Low Medium

Table 1: Comparison of the approaches to NN inference on weak devices

However, the existing schemes mainly target strong mobile devices

(e.g., smartphones) where a moderate reduction of NN complexity

is sufficient. When being tailored to the weak embedded devices’

extreme resource constraints, the over-simplified NNs will suffer

large reductions of inference accuracy. For example, when the size

of a ResNet50 model is reduced by 100 times, its inference accu-

racy could drop from 77% to 62% [22]. Even with the recent Neural

Architecture Search (NAS) technique that finds the best NN struc-

ture with the given complexity constraint [10, 44], the inference

accuracy loss could be still >10%.
Instead, a better solution to avoiding the inference accuracy loss

is to offload the NN computations to a cloud server. To minimize the

communication cost of offloading, one can compress the NN input

data [41, 45, 46, 62] before transmission (Figure 1 - top right), but

the compression ratio could be limited and result in high data trans-

mission latency, with the low-speed wireless radios (e.g., Bluetooth

and ZigBee) used on embedded devices for energy saving purposes.

Later research efforts suggest to partition the NN (Figure 1 - bottom

right), and use the Local NN 2 to transform the input data into amore

compressible form of feature representations before transmission.

Existing NN partitioning schemes [31, 34, 36, 39, 42, 65], however,

need to use an expensive Local NN to enforce feature sparsity and

incur unacceptable computing latency on the local device. The key

reason of this limitation is that these schemes regardlessly apply

the same learning approach to every input data, and hence need a

sufficient amount of representation power at the local NN for the

worst case of input data.

To address this limitation and practically enable NN inference

on extremely weak devices (e.g., MCUs) with the minimum latency,

in this paper we present AgileNN, a new technique that shifts the

rationale of NN partitioning and offloading from fixed to agile

and data-centric. Our basic idea is to incorporate the knowledge

about different input data’s heterogeneity in training, so that the

required computations to enforce feature sparsity aremigrated from

online inference to offline training. More specifically, we interpret

such heterogeneity as different data features’ importance to NN

inference, and leverage the eXplainable AI (XAI) techniques [56, 59]

to explicitly evaluate such importance during training. In this way,

as shown in Figure 1 - bottom left, the online inference can enforce

feature sparsity by only compressing and transmitting the less

important features, without involving expensive NN computations.

The important features, on the other hand, are retained at the

2In this rest of this paper, we use Local NN to indicate the portion of partitioned NN
at the local device, and Remote NN to indicate the portion of partitioned NN at the
cloud server.

local device and can be perceived by a lightweight NN with low

complexity. Predictions from Local NN and Remote NN, eventually,

are combined at the local device for inference.

The major challenge of using AgileNN in practice, however, is

that different data features may have similar importances to NN in-

ference. In this case, sparsity among less important features will be

reduced and result in lower data compressibility, and more features

also need to be retained at the local device, incurring extra comput-

ing latency. To address this challenge and simultaneously minimize

the local embedded device’s costs in computation and communica-

tion, AgileNN’s basic approach is to intentionally manipulate the

data features’ importance via non-linear transformation in the high-

dimensional feature space, so as to ensure that such importance’s

distribution over different features is skewed. In other words, only

few features make the majority of contributions to NN inference. In

our design, we realize such skewness manipulation with a highly

lightweight feature extractor, and jointly train the feature extractor

with Local and Remote NNs to ensure inference accuracy.

To our best knowledge, AgileNN is the first technique that

achieves real-time NN inference on embedded devices with ex-

tremely weak capabilities in computation and communication. Our

detailed contributions are as follows:

• We effectively migrate the required computations in NN

offloading from online inference to offline training, by lever-

aging XAI techniques that allow lightweight enforcement of

feature sparsity at runtime.

• We developed new AI techniques that use XAI to explicitly

manipulate the importances of different data features in NN

inference, so as to ensure the effectiveness of NN partitioning

and offloading.

• By enforcing skewness of such importance’s distribution

over different features, we allow flexible tradeoffs between

the accuracy and cost of NN inference on embedded devices,

without incurring any extra computing or storage cost.

We implemented AgileNN on a STM32F746 MCU board and a

server with an Nvidia RTX A6000 GPU, and evaluated the per-

formance of AgileNN on various popular datasets under different

system conditions. From our experiment results, we have the fol-

lowing conclusions:

• AgileNN is real-time. Compared to the existing schemes

[39, 44, 65], AgileNN reduces the NN inference latency by

up to 6x, and restrains such latency within 20ms on most

datasets. It hence supports real-time NN inference on weak
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embedded devices, by ensuring that the sensory data can

always be timely consumed.

• AgileNN is accurate. Compared to the existing NN parti-

tioning schemes, AgileNN provides the similar inference

accuracy but achieves much higher feature sparsity. Such

high sparsity, then, reduces the amount of data transmission

in NN offloading by up to 70%.

• AgileNN is lightweight. Compared to the current NN infer-

ence schemes on embedded devices, AgileNN reduces the

local energy consumption by >8x, while consuming 1.2x less

memory and 5x less storage space.

• AgileNN is adaptive. It minimizes the performance degrada-

tion of NN inference in different embedded device settings

and system conditions, even with extremely low computing

power and wireless bandwidth.

2 BACKGROUND & MOTIVATION

To help better understand the AgileNN design, we first demonstrate

the limitations of the existing NN offloading schemes. Then, we

motivate our design by introducing XAI techniques that explicitly

evaluate the importance of different features, and highlighting the

necessity of having features with skewed importance distributions.
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Figure 2: Data compressibility in NN offloading

2.1 Data Compressibility in NN Offloading

To reduce the communication cost of NN offloading, an intuitive

method is to compress the raw data before transmission, but heavy

compression will distort the important information in data and

hence affect the NN inference accuracy. To verify such impact, we

apply both standard JPEG [62] and NN-favorable DeepN-JPEG [45]

compression methods to images in the ImageNet dataset [17], and

measure the inference accuracy loss on various NN models when

using different data compression rates [28, 55, 58]. As shown in

Figure 2(a), a moderate compression rate of 25x will reduce the NN

inference accuracy by >10%, and such accuracy loss will quickly

grow to >20% when the compression rate is >30x.
Instead, current NN partitioning approaches improve the data

compressibility by extracting more compressible forms of feature

representations from the raw input data. However, as shown in Fig-

ure 2(b) with two representative partitioning approaches (EHP [36]

and JALAD [42]), although these schemes can achieve the similar

compression rates with the minimum impact on the NN inference

accuracy3, their feature extraction is very computationally expen-

sive. For example, achieving a compression rate of 30x will require

3The loss of NN inference accuracy in these schemes can be effectively restrained
within 1%, for all the data compression rates being applied.

a large Local NN with a model size of >3MB, which is unaffordable

on most weak embedded devices such as STM32 MCUs.

2.2 Explainable AI

The aforementioned limitation motivates our design that achieves

better data compressibility by evaluating different data features’

importance during offline training. Based on such knowledge about

feature importance, during online inference we can explicitly en-

force sparsity in the less important features with the minimum

local computing cost. To evaluate such feature importance, classic

perturbation-based approaches [12] measure how the NN inference

accuracy varies after injecting noise to features in all the training

data, but cannot precisely evaluate feature importance over individ-

ual data samples. Attention-based mechanisms [8, 61] support such

individualized evaluation by adding an extra weight generator in

NN training, but need to tailor the weight generator’s structure to

each NN model and could hence be inaccurate in some NN models.
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Recent research on eXplainable AI (XAI) improves the accu-

racy of feature importance evaluation by offering attribution tools

that quantitatively correlate each input variable to the NN outputs

during training [56, 59]. For example, typical XAI tools such as

Integrated Gradients (IG) [59], as shown in Figure 3, feed a number

of linear interpolations between the input variables and a naive

baseline to the NN. Then, for an input variable, they compute each

of its interpolation’s gradient with respect to the NN’s output (e.g.,

confidence scores), and accumulate these gradients to measure the

importance of this input variable4. In this way, these XAI tools are

robust and applicable to any AI model without extra modification.
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Figure 4: Skewness of feature importance. Skewness is mea-

sured as the normalized importance of the top 20% features,

using the MobileNetV2 model [55].

4In practice, such accumulation is used to approximate to the path integral of gradients.
The more interpolations are used, the better approximation will be.
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Figure 5: Overview of AgileNN design

However, one key limitation of the existing XAI tools is that its

accuracy of feature importance evaluation builds on accurate NN

inference in advance. If the NN’s output is ambiguous (e.g., due to

inadequate training), XAI could produce misleading evaluations

because the gradients computed from the NN’s output are highly

random. In the worst case, such randomness can cause all the fea-

tures to be misranked by their importance [54]. This limitation

motivates us to use a pre-trained reference NN model in AgileNN’s

training, to ensure correct XAI evaluation on feature importance.

2.3 Skewness of Feature Importance

Based on the feature importance evaluated by XAI, the effective-

ness of AgileNN’s offloading depends on the skewness of such

importance’s distribution over different features. The higher such

skewness is, the fewer features are playing a dominant role in NN in-

ference and we can hence enforce higher sparsity in less important

features without impairing the NN inference accuracy. However, as

shown in Figure 4(a) that exemplifies such importance distribution

of different data samples in the CIFAR-10 dataset [38], skewness

may not always exist in every input data. Furthermore, as shown in

Figure 4(b), when we measure skewness as the ratio of normalized

importance of the top 20% features, such skewness in >40% of data

samples in the CIFAR-10 and CIFAR-100 datasets [38] is <50%.
Such low skewness in the input data motivates us to design

new NN structures that intentionally manipulate and enhance such

skewness in feature extraction, while minimizing the impact of

such skewness manipulation on the NN inference accuracy.

3 SYSTEM OVERVIEW

As shown in Figure 5, AgileNN partitions the neural network into a

Local NN and a Remote NN. In online inference, AgileNN runtime

uses a lightweight feature extractor at the local embedded device

to provide feature inputs: the top-k features with high importance

are retained by the Local NN to make a local prediction, which is

then combined with the Remote NN’s prediction from other less

important features for the final inference output. In this way, the

complexity of Local NN could be minimized without impairing

the inference accuracy, and high sparsity can be enforced when

compressing and transmitting less important features to the server.

In offline training, AgileNN jointly trains the feature extractor,

Local NN and Remote NN with a unified loss function. In particular,

the feature extractor is trained to meet the user’s requirement of

feature importance skewness, such that the normalized importance

of top-k features should exceed a threshold ρ ∈ [0, 1]. During the
training process, enforcing this requirement is equivalent to apply

non-linear transformations to the output feature vector in the high-

dimensional feature space.

Based on this design, AgileNN can flexibly balance between the

accuracy and cost of NN inference by adjusting the required feature

importance skewness. The higher the skewness is (i.e., smaller k
and larger ρ), the lower resource consumption will be at the local

device due to the higher compressibility of less important features

being transmitted, but the NN inference is more affected due to

the feature extractor’s non-linear transformation in the feature

space. In practice, with the same AgileNN runtime being trained

for the specific embedded device, the user can adaptively choose

different tradeoffs according to the application scenarios and local

resource conditions, without spending extra local computing or

storage resources to maintain multiple NN models [21] or adopt

different learning strategies [39].

3.1 Skewness Manipulation

In order to manipulate the importance of extracted features and

meet the skewness requirement, AgileNN’s basic approach is to

incorporate both the inference accuracy and current skewness of

feature importance into the unified loss function in training. More

specifically, in each training epoch, AgileNN feeds the current set of

features extracted by the feature extractor to the XAI tool module,

which evaluates and outputs the importance of each feature to NN

inference. The skewness of feature importance, then, is incorporated

into the loss function in the following two aspects.

1) The disorder loss, which mandates that the top-k features with

highest importance are always in the first k channels of the output

feature vector. It is calculated as

Ldisorder = max
(
0,max(�I2) −min(�I1)

)
, (1)
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where �I1 indicates the normalized importances of features in the

first k channels of the output feature vector and �I2 indicates the
normalized importances of other features.

This ordering is essential to online inference, where the XAI tool

is unavailable and the top-k features with high importance should

hence be always located in fixed channels of the extracted feature

vector. With such feature ordering, we can further instruct the

feature extractor to enhance the importance of the top-k features

and hence enforce the required skewness. The knowledge about

the fixed locations of top-k features in the feature vector, on the

other hand, will also enable prompt split of features for local and

remote inferences, without involving any extra computations or

manual efforts at run-time. More details of such feature ordering

are provided in Section 4.1.

2) The skewness loss, which measures the difference between the

current skewness of feature importance and the skewness require-

ment. It is calculated as

Lskewness = max
(
0, ρ − | �I1 |

)
, (2)

where | · | indicates the vector’s 1-norm.

These two loss components are then combined with the standard

prediction loss in AgileNN’s training. Details about such combined

training loss are provided in Section 4.2.

On the other hand, as described in Section 2.2, the accuracy of

XAI’s feature importance evaluation requires a well-trained NN

in advance to provide correct inference labels. Hence, to ensure

the quality of AgileNN’s training, we introduce a reference NN

model, which has been pre-trained for the same learning task with

sufficient representation power5, to provide inference outputs to

the XAI tool using the extracted features from AgileNN’s feature

extractor. To further avoid any possible ambiguity, we compare

each inference output made by the reference NN with the training

label, and only use it in XAI evaluation if the reference NN makes

correct predictions.
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3.2 Pre-processing the Feature Extractor

AgileNN jointly trains the Local NN and Remote NN with the

feature extractor, so as to ensure that they can provide accurate

predictions from the extracted features with skewed distribution

of importance. However, since the feature extractor in AgileNN

needs to be deployed at the local device and hence has to be very

lightweight, it may not have sufficient representation power to

meet this learning objective in the initial phase of training, and the

5In practice, such reference models are widely available as public online. For example,
EfficientNet model is available online [60] and can achieve >90% inference accuracy
on large datasets such as ImageNet [17].

joint training may hence encounter unexpectedly high learning

difficulty or even fail to converge. For example, as shown in Figure

6, such joint training on CIFAR-100 dataset, if starting from scatch,

is highly unstable unless a sufficient number of convolutional layers

(≥6) is used in the feature extractor.

To avoid such learning difficulty, AgileNN’s approach is to pre-

process the feature extractor and initialize its network weights,

prior to the joint training with Local and Remote NNs. In this way,

the joint training will not start from scratch but instead from a

more established stage with less ambiguity, and hence has lower

requirement on the initial representation power of the feature ex-

tractor.

Feature 
Extractor

Local NN

Remote NN

Output feature vector

feature index

Figure 7: Pre-processing the feature extractor

More specifically, the feature ordering mandated by the disorder

loss in Section 3.1 may be hard to fulfill by the feature extractor

in the initial stage of training. Instead, as shown in Figure 7, we

select k initial channels in the output feature vector where the top-k
features with high importance are most likely to be located. We

then use the corresponding k features as the input to the Local NN.

More details of selecting these initial channels and integrating such

pre-processing into the training process are in Section 5.

3.3 Combining Local and Remote Predictions

AgileNN combines the predictions made by the Local and Remote

NNs via weighted summation, to produce the final inference output

at the local embedded device. Compared to other NN-based alter-

natives such as adding an extra NN layer for combination, we use

this solution because of the following two reasons. First, computing

such point-to-point weighted sums is much more lightweight than

NN operations and adds negligible computation overhead to the

local device. Second, the outputs of Local and Remote NNs always

correspond to the same number of aligned feature channels, and

the point-to-point summation retains such alignment. Using an

NN layer (e.g., a fully-connected or convolutional layer) to com-

bine these two outputs, on the other hand, could possibly entangle

them together and break such alignment, hence impairing the final

inference accuracy.

The main difficulty of such combination, however, is that the

outputs of Local NN and Remote NN may not be in the same scale

and may hence result in extra loss in inference accuracy, because

some small but important output values in one NN could be over-

whelmed by large values in another NN. To address this difficulty,

our solution is to incorporate the summation weight α into the joint

training procedure. Being the same as other NN parameters, α is

also trained with gradient-based feedback using stochastic gradient

descent (SGD) algorithms [11]. However, due to the big difference

between the complexities of Local NN and Remote NN, the training

is likely to be biased towards the Remote NN and ignore the Local
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NN’s contribution, by assigning near-zero values to α . Such bias

could possibly make the training to be highly unstable or signifi-

cantly reduce the inference accuracy, because the Local NN that

perceives the top-k important features may not be well trained.
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Figure 8: Prediction weighting with α

To avoid this bias, in AgileNN we introduce a soft constraint by

formulating α as a parameterized sigmoid function:

α(w ;T ) =
1

1 + e−w/T
,

wherew is a trainable parameter andT controls α ’s sensitivity tow .

As shown in Figure 8(a), the higher T is, the slower α(w ;T ) varies
along with w , and hence the less likely that the value of α will

approach 0 or 1 during training. In practice, as shown in Figure

8(b), a moderate value of T between 4 and 8 can effectively avoid

biased values of α and ensure high inference accuracy.

The trained value of α is loaded to AgileNN runtime at the

local device. In real-world settings, when the feature extractor

does not correctly evaluate the importance of some features due

to the possible inaccuracy in XAI, the user could flexibly fine-tune

AgileNN’s strategy of NN partitioning at run-time by reconfiguring

the value of α , to mitigate the loss of inference accuracy.

4 SKEWNESS MANIPULATION

In this section, we provide technical details about how the training

loss function in AgileNN’s training is constructed based on the

feature importances evaluated by XAI, so as to enforce the required

skewness of such importances among the extracted features.

4.1 Feature Ordering

Since XAI evaluation of feature importance builds on accumulat-

ing gradients in training and is hence unavailable during online

inference, AgileNN makes sure that its feature extractor always

generates the top-k features with highest importance in the first k
channels in the output feature vector, as shown in Figure 9(a) - top,

so that AgileNN runtime at the local embedded device can correctly

identify them for every input data during inference.

In training, a straightforward method to achieve this learning

objective is to adopt the following loss function:

Ldescent = ‖�I − �Isorted‖
2
2 ,

where �I denotes the normalized importances of the currently ex-

tracted features and �Isorted denotes the sorted form of �I in the

descending order. Minimizing this loss, hence, ensures that the ex-

tracted features are always sorted in the descending order of their

importances. However, strictly enforcing such descending order
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Figure 9: Feature reordering

in the produced feature vector requires high representation power

in the feature extractor, or adds extra confusions in training if the

feature extractor being used is too lightweight. To demonstrate this,

we conduct preliminary experiments by using the feature extractor

of the MobileNetV2 model [55] on the CIFAR-100 dataset [38]. As

shown in Figure 9(b), enforcing such descending order in the output

feature vector reduces the inference accuracy by >10%.
Instead, we relax the learning objective by reducing the number

of features being repositioned. As shown in Figure 9(a) - bottom, we

do not require that all the features are sorted in the descending order

of their importance, but instead only require that any top-k feature’s

importance is higher than any other feature’s importance. If any

violation is found during training, a penalty will feedback to the

NN for parameter update. Based on this relaxed learning objective,

we construct our disorder loss as shown in Eq. (1), which will only

be non-zero if any violation of feature ordering occurs in training.

In theory, this loss function of feature disordering is almost always

differentiable [48] and can be seamlessly incorporated into the

regular training procedure6. As shown in Figure 9(b), Ldisorder can
reduce the percentage of disorder cases to <2% without impairing

the inference accuracy.
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Figure 10: Impact of λ on CIFAR-100 dataset

4.2 Combined Training Loss

To enforce the skewness requirement, we want that the cumula-

tive normalized importance of top-k features exceeds the given

threshold ρ, and hence define the skewness loss as shown in Eq.

(2). Then, we combine the disorder loss and skewness loss together

to construct the training loss for skewness manipulation as:

L = λ · Lprediction + (1 − λ) · (Lskewnss + Ldisorder)

where Lprediction is the standard prediction loss and λ is a hyperpa-

rameter within (0, 1) to control the contributions of Lskewnss and
Ldisorder in training feedback. In practice, according to our pre-

liminary results in Figure 10, aggressively reducing λ, although

6NNs are typically trained by providing gradient-based feedback being calculated from
the loss function.
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Algorithm 1 Selecting the k initial feature channels

Input: Dtrain: the training dataset with N samples;

TXAI (·): XAI-enabled Feature Importance Evaluator;

E(·): Feature extractor that outputs C channels

Output: (j1, j2, ..., jk ): The k selected feature channels.

1: (p1,p2, ...,pC ) ← 0 //initialize

2: for each di ∈ Dtrain do

3: F ← E(di ) // extract features

4: I ← TXAI (F ) //evaluate feature importance

5: Fsorted ← sortI (F ) //sort features by their importance in

descending order

6: Ftop−k ← Fsorted[1 : k] //extract the top-k features with high

importance

7: for c = 1,...,C do

8: if F [c] ∈ Ftop−k then

9: pc ← pc + 1/N
10: R ← argsort(p1,p2, ...,pC ) //get the ranking of channels

by their likelihood
11: (j1, j2, ..., jk ) ← R[1 : k] //decide top-k channels

achieving higher skewness, could reduce the impact of prediction

loss in training feedback and hence impair the NN inference accu-

racy. In contrast, we observe that a moderate value of λ between 0.2

and 0.4 could effectively approximate to the skewness requirement

with the minimum impact on NN inference accuracy. Alternatively,

one can also adopt the techniques on NN loss balancing [14, 26] for

adaptive adjustment of λ at runtime.
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Figure 11: Effectiveness of Pre-processing

5 PRE-PROCESSING THE FEATURE
EXTRACTOR

In this section, we describe in detail how we pre-process the feature

extractor by selecting the initial k feature channels as the input to

the Local NN in joint training. Intuitively, we can randomly select

k feature channels and mandate the feature extractor to produce

the top important features in these channels using the disorder

loss described in Section 3.1. However, such arbitrary selection will

bring serious learning difficulty that leads to low training qual-

ity. We demonstrate this by doing preliminary experiments on the

CIFAR-100 dataset with such random channel selection. As shown

in Figure 11, the NN experiences learning difficulty from the begin-

ning epochs and it eventually causes poor convergence.

Instead, we make such channel selection based on the likelihood

that one of top-k features with high importance is located in a

channel, and compute such likelihood from the training data. More

specifically, as described in Algorithm 1, such likelihood of each

channel is cumulatively computed from all the N data samples in

the training dataset, and increases by 1/N every time when a data

sample’s top-k features with high importance are located in the

channel. As shown in Figure 11, our pre-processing can largely

reduce the learning difficulty and ensure the quality of training.

The first k channels

Desired mapping layerInitial mapping layer

training

Figure 12: Training the mapping layer

After having selected these initial k channels, we expect the

joint training process will be able to gradually enforce the required

feature ordering, as described in Section 4.1, through the disorder

loss. To facilitate this, as shown in Figure 12, in AgileNN’s training

we add an extra mapping layer between the feature extractor and

the Local NN, and instruct the training process to ensure that the

top-k important features reside in the first k channels of the output

feature vector. After the training finishes, this mapping layer will

be discarded and only the feature extractor is used in inference.

ESP WiFi
module

STM32F746 board

Figure 13: Devices in our implementation

6 IMPLEMENTATION

As shown in Figure 13, we use a STM32F746NG MCU board7 as the

local embedded device, which is widely used as the computing plat-

form in current tinyML and on-device AI research (e.g., MCUNet

[44]). It is equipped with an ARM 32-bit Cortex-M7 CPU at 216MHz,

320KB SRAM and 1MB flash storage, and supports flexible CPU fre-

quency scaling to provide different amounts of on-device computing

power. In addition, since neural network inference on the Cortex

M series of MCUs has been officially supported by the TensorFlow

community8, we believe that using these MCUs to implement and

evaluate AgileNN could better justify AgileNN’s practical merits,

compared to using other MCUs such as the MSP430 series.

TheMCU board uses an ESP-WROOM-02DWiFi module to trans-

mit data to a server. The server is a Dell Precision 7820 workstation

that equips with a 3.6GHz 8-core Intel Xeon CPU, 128GB main

memory and an Nvidia RTX A6000 GPU with 48GB memory.

As shown in Figure 14, our offline training in AgileNN is imple-

mented using TensorFlow Python library, and we converted the

Local NN from a float32 model into an int8 model using Tensor-

Flow Lite Converter. This model is then casted to a static binary

array for better memory efficiency on the local device. We use TF

Micro runtime to execute the int8 model on the STM32 board. To

further reduce the Local NN’s computing latency, we merge the

7https://www.st.com/en/microcontrollers-microprocessors/stm32f746ng.html
8https://www.tensorflow.org/lite/microcontrollers
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original TF Micro runtime with CMSIS-NN 5.0, which provides ex-

tra acceleration on several selected NN operations on ARM devices.

On the other hand, the Remote NN remains full precision and is

executed by TensorFlow Python runtime on the server.

Float32 model

Int8 local NN

TensorFlow Python

Binary array

NN implementation

Local device implementation

TF Micro

CMSIS-NN

NN Runtime Engine

STM32 Core ESP Core

Quantizer

UART

LZW encoder

UART

Wi-Fi 
socket

TensorFlow Lite

xxd command

Remote server implementation

Float32 remote NN TensorFlow Python runtime

Python General API
Wi-Fi 

socket
LZW decoder

Dequantizer

Figure 14: AgileNN implementation

On the STM32F746 board, we use STM32CubeIDE to implement

its software in C++ and configure the embedded hardware. To

compress the less important features before transmission, we first

adopt learning-based quantization [4] and then apply standard

LZW compression [49]. The compressed features are delivered to

the WiFi module through UART, and the WiFi module transmits

these features to the server through a UDP link at 6 Mbps.

On the server, we write a custom Python script to communicate

with the STM32F746 board via general socket APIs, and verifies

the integrity of the received features being applying them to the

Remote NN.

7 PERFORMANCE EVALUATION

In our evaluations, to meet the embedded device’s local resource

constraints, we construct AgileNN’s feature extractor with two

convolutional layers, each of which has 24 output channels. The

Local NN in AgileNN has the minimum complexity, and contains

one global-average pooling layer and one dense layer. The Remote

NN in AgileNN is constructed by removing the first convolutional

layer from the MobileNetV2 [55] model. In all the evaluations, the

sizes of feature extractor, Local NN and Remote NN in AgileNN

remain fixed, but we vary the compression rate when transmitting

the set of less important features from local to remote.

We evaluate AgileNN over multiple datasets listed below, and

scaled all images in datasets to 96x96 in our experiments. Due to the

low memory capacity of the embedded device, we focus on image

recognition tasks instead of memory-demanding learning tasks,

such as audio and video analytics [6, 64] that require expensive

preprocessing steps [43].

• CIFAR-10/100 [38]: This dataset contains 50k training im-

ages and 10k testing images that belong to 100 different

categories and 10 super categories.

• SVHN [50]: This dataset contains 73k training images and

26k testing images about street address numbers.

• ImageNet-200 [40]: This is a subset of ImageNet dataset

[17] that contains 100k training images and 10k testing im-

ages that are classified into 200 categories.

In training, AgileNN adopts an EfficientNetV2 CNN [60] that

is pre-trained on the ImageNet dataset as the reference network,

and the training hyperparameters are configured the same as Mo-

bileNetV2’s setting [55]. We use the SGD optimizer with a learning

rate of 0.1, and the standard weight decay is set to 5 × 10−4 and all

the training runs for 200 epochs. The batch size in training is set to

be 128 for the CIFAR-10 dataset and 64 for all other datasets.

In our evaluations, all the experiment results are averaged over

the entire testing dataset. We compare AgileNN with the baseline

of edge-only inference and three existing approach NN inference

approaches, which span both categories of local inference and NN

partitioning:

• Edge-only inference: The entire local data is compressed

by the LZW compressor and transmitted to the server for

inference.

• MCUNet [44]: The entire NN is running at the local embed-

ded device, and the NN structure is optimally discovered by

NAS according to the on-device resource constraint on the

NN complexity.

• DeepCOD [65]: A NN-based encoder is embedded on the

local device to transform the raw data or features into a more

compressible form. The encoder is trained with the sparsity

constraint in an end-to-end manner9.

• SPINN [39]: Besides NN partitioning, early-exit structures

are incorporated in the NN to adaptively adjust the NN com-

plexity for runtime inference.

In particular, since MCUNet’s NN design adopts different in-

put resolutions for different datasets, we make sure to always use

the same image resolution among all other approaches, including

AgileNN, to make fair comparisons among different approaches.

0 50 100 150 200
# Epochs

0

20

40

60

80

100

T
es

t 
ac

cu
ra

cy
 (

%
)

CIFAR-100 Regular
CIFAR-100 AgileNN
SVHN Regular
SVHN AgileNN

(a) Test accuracy

0 50 100 150 200
# Epochs

0

1

2

3

4

5

T
es

t 
lo

ss

CIFAR-100 Regular
CIFAR-100 AgileNN
SVHN Regular
SVHN AgileNN

(b) Test loss

Figure 15: AgileNN’s training performance on CIFAR-100

and SVHN datasets

7.1 Training Convergence and Cost

As a prerequisite, we first evaluate the quality and cost of AgileNN’s

training. As shown in Figure 15, during the training procedure,

AgileNN exhibits a very similar rate of training convergence, in

terms of test accuracy and loss, compared to regular training of

MobileNetV2 on CIFAR-100 and SVHN datasets. These results show

that, although the added feature ordering and skewness manipu-

lation increases the learning complexity, AgileNN can still ensure

fast training convergence with the appropriate loss function design

and preprocessing of the feature extractor.

On the other hand, with the extra computations of feature im-

portance using XAI and the corresponding involvement of extra

9AgileNN is equivalent to DeepCOD [65] if the top-k features with high importance
are also compressed and sent to the server.
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training feedback, we observe 3x-4x wall-clock time increase for

each training epoch in AgileNN. However, since the training of

feature extractor, Local and Remote NNs is conducted offline, such

time increase will not affect AgileNN’s online performance on weak

embedded devices. Reduction of such training time can be done by

either using stronger computing hardware (e.g., stronger GPUs) or

more lightweight XAI tools [29, 57].

7.2 Accuracy and Latency of NN Inference

In general, the accuracy of NN inference can be improved by us-

ing more complicated NNs, which in turn result in longer infer-

ence latency. For easier comparisons, we configure the existing

approaches’ NN complexities so that the difference between their’s

and AgileNN’s inference accuracy is always within 10%. In these

cases, we compare the AgileNN’s end-to-end inference latency with

theirs. Note that for local inference approaches such as MCUNet,

the inference latency is only determined by the local NN computing

time. For NN partitioning approaches including DeepCOD, SPINN

and AgileNN, the inference latency consists of 1) the local NN com-

puting time, 2) the local computing time for data compression, 3)

the network transmission time and 4) the remote NN time for data

decompression and computing.
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Figure 16: Latency and accuracy of NN inference

Results in Figure 16 show that, AgileNN is able to reduce the

end-to-end inference latency by 2x-2.5x when compared to all the

existing approaches, while retaining similar inference accuracywith

DeepCOD and SPINN. In particular, such latency in most datasets

can be effectively controlled within 20ms, which is comparable to

the sampling interval of many embedded sensor devices10. As a

result, AgileNN can effectively support real-time NN inference on

weak embedded devices, by ensuring sure that generated sensory

data can always be timely consumed.

10For example, most camera sensors on embedded devices have a sampling rate of 30Hz
during video capture. The sampling rate of environmental sensors (e.g., temperature
sensors) is usually <10Hz due to the slower changes of the physical environment [9].
The sampling rate of IMU sensors is usually capped at 100Hz, but a lower rate is used
more often in practice to save power [19].

More specifically, Figure 16 shows that the AgileNN’s latency

reduction mainly comes from the lower local NN computing time,

which can be reduced by up to 10x. Compared to DeepCOD and

SPINN which have to use a complicated Local NN to ensure feature

sparsity, the adoption of XAI in AgileNN allows achieving higher

feature sparsity with amuchmore lightweight Local NN and feature

extractor. The inference latency of MCUNet is much higher (100-

500ms) than that of other approaches, due to the complicated NN

that is fully executed on the embedded device.

On the other hand, although edge-only inference incurs the

minimum local computing delay, it suffers from the low wireless

link rate at the local device11 that results in a significantly higher

wireless transmission latency due to the low data compressibility.

The overall end-to-end latency of edge-only inference, hence, is

higher than DeepCOD, SPINN and AgileNN.

Dataset CIFAR-10 CIFAR-100 SVHN ImageNet

Reduction 43.7% 15.8% 72.3% 20.8%

Table 2: Reduction of transmitted data size, compared to

DeepCOD [65]

Such higher feature sparsity, on the other hand, also results

in significant reduction on network transmission time. As shown

in Table 2, such reduction on some datasets such as SVHN could

exceed 70%. This reduction, even being lower than 20%, could be

important in some IoT scenarios, where IoT devices are wirelessly

connected to the 5G backbone network and will hence need to

make usage-based payments to the 5G service provider [63].

30 35 40 45 50
Compression rate

0

20

40

60

80

A
cc

u
ra

cy
 (

%
)

AgileNN
DeepCOD

(a) CIFAR-100

50 100 150 200 250
Compression rate

0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

AgileNN
DeepCOD

(b) SVHN

Figure 17: Accuracy with different compression rates

The Impact of Compression Rate. Since DeepCOD performs

best among the three existing approaches for comparison, we fur-

ther compare its performance with AgileNN when we apply differ-

ent compression rates to transmit data features to the remote server.

Results in Figure 17 over the CIFAR-100 and SVHN datasets show

that, AgileNN can always achieve higher NN inference accuracy

with the same compression rate being applied, due to its more agile

and efficient enforcement of feature sparsity that results in better

compressibility. In particular, when very high compression rates

are applied, DeepCOD experiences significant accuracy reduction

due to the limited representation power of its encoder, but such

reduction in AgileNN is much lower.

The Impact of Prediction Reweighting. As described in Section

3.3, the predictions made by Local NN and Remote NN are combined

towards the inference output, using a tuneable parameter α . Results

11Due to the local resource constraint, the maximum WiFi data rate at the STM32F746
MCU’s WiFi module is capped at 6 Mbps.
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in Figure 18 on the CIFAR-100 and SVHN datasets show that, the

NN inference accuracy will significantly drop if highly biased values

of α (e.g., close to 0 or 1) are being used. This is because using a

very small α reduces the contribution of important features and

could hence miss key information to inference. Increasing the value

of α , on the other hand, imposes majority of the inference task to

the Local NN, which may not be complicated enough to achieve

high inference accuracy.
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Figure 18: Applying different weights

Instead, we conclude that the maximum inference accuracy can

be achieved when α =0.3 for CIFAR-100 dataset and α =0.6 for

SVHN dataset. Note that the optimal value of α is dependent on

the data characteristics in the training dataset. In practice, this

value can either be jointly trained offline with the feature extractor

and NNs, or be manually tuned online based on the specific data

characteristics for better inference accuracy.

7.3 Local Resource Consumption

In this section, we evaluate the amount of local resources at the

embedded device that are consumed by AgileNN’s inference. Such

local resources include 1) the local battery power and 2) the local

memory and flash storage. For fair comparison between different

schemes, being similar with the previous experiments, we keep the

gap between different schemes’ inference accuracy to be within 5%.
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Figure 19: Local energy consumption per NN inference run

Energy consumption.We measure the amount of local device’s

energy consumption per NN inference run as the average over

100 inference runs. Such energy consumption includes both the

local NN computing cost and data transmission cost via WiFi. As

shown in Figure 19, since AgileNN uses a very lightweight feature

extractor and local NN but achieves even higher feature sparsity

with these lightweight NN structures, its runtime consumes less

local energy in both computation and communication, leading to

significantly higher energy efficiency. Especially when being used

on smaller datasets such as CIFAR-100, its energy efficiency is at

least 2.5x higher than that of DeepCOD, and is >8x higher than

that of MCUNet.

Memory and storage usage.We measure the usage of on-board

memory (SRAM) and storage (FRAM) by using the STM32Cube

60

65

70

75

80

A
cc

u
ra

cy
 (

%
)

AgileNN MCUNet
0

200

400

600

800

U
sa

g
e 

(K
B

)

SRAM
FRAM
accuracy

(a) CIFAR-100

40

50

60

70

A
cc

u
ra

cy
 (

%
)

AgileNN MCUNet
0

200

400

600

800

1000

U
sa

g
e 

(K
B

)

SRAM
FRAM
accuracy

(b) ImageNet-200

Figure 20: Memory and storage usage

debugging software. As shown in Figure 20, due to the low com-

plexity of feature extractor and NN, AgileNN’s consumptions of

the local device’s memory and storage are both below 20%. In par-

ticular, when being compared with MCUNet whose NN structures

are optimized via NAS, AgileNN occupies the similar amount of

memory but a much smaller amount of external storage. Such high

memory and storage efficiency is particularly important on weak

embedded devices with very limited storage resources, because it

allows deployment of much more powerful NN models on these

devices and hence provide solid support to more challenging NN

applications. On the other hand, the SRAM usages of DeepCOD

and SPINN are at the similar level to that of AgileNN.

7.4 Effectiveness of Skewness Manipulation

Skewness manipulation is the cornerstone of efficient NN offloading

in AgileNN. To investigate the effectiveness of AgileNN’s skewness

manipulation, we apply different requirements of feature impor-

tance skewness by varying the value of k between 3, 5 and 7, to

retain 10%, 20% and 30% of features with the highest importance at

the local NN. Correspondingly, we require the the normalized im-

portances of these features to reach 70%, 80% and 90%, respectively.

We first verify whether AgileNN’s skewness manipulation can

adequately achieve the required skewness in the extracted features.

Figure 21(a) and 21(d) show that AgileNN can always meet the

required skewness objective with minor difference. Especially on

the SVHN dataset, the achieved skewness is even 4-12% higher than

the objective. This demonstrates that our skewness loss function

described in Section 3.1 is highly effective.

Second, Figure21(c) and 21(f) show that, with the same amount of

important features being retained at the local NN, enforcing higher

skewness on these features can increase the feature sparsity on

the remaining less important features, hence reducing the network

transmission latency. At the same time, such higher skewness also

affects the NN inference accuracy as shown in Figure 21(b) and

21(e). The major reason is that, when the normalized importances

of locally retained features are too high, the lightweight Local NN

may not have sufficient representation power to correctly perceive

these features, hence leading to extra accuracy loss. However, since

the Local and Remote NNs are jointly trained, such accuracy drop

can be always constrained within 3%.

These results demonstrate that AgileNN can effectively manipu-

late the skewness of feature importance in different settings, hence

allowing flexible tradeoffs between the accuracy and cost of NN

inference. Retaining more features at the local devices could help

mitigate such accuracy drop, at the expense of extra local NN com-

putations. In practice, the optimal choice of skewness requirement
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Figure 21: Effectiveness of skewness manipulation with different requirements of feature importance skewness

and split ratio will depend on the specific device’s computation

power and characteristics of the training dataset. We generally

suggest that the optimal design choice is to retain 20% important

features at the local device and require the normalized importance

of these features to be >80%. Such skewness requirement will be

used in all the following experiments.
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Figure 22: The impact of different CPU Frequencies

7.5 Impact of Local CPU Frequency

Embedded devices may have CPUs with different frequencies. For

example, the Arduino Nano uses an ATmega328 CPU at 16MHz and

the STM32H743 MCU uses a dual-core ARM Cortex-M7 CPU at

480MHz, and the CPU frequency can also be adaptively configured

at runtime. To study the impact of CPU frequency on AgileNN’s

performance, we adjust the CPU frequency of STM32F746 board by

tuning its clock scaling factor. Here, we assume that most embedded

devices, such as MCUs, will be exclusively used for NN inference

when undertaking related computing tasks. Hence, we consider

that the local device’s CPU can be fully utilized for NN inference.

As shown in Figure 22, although the inference latency increases

when the CPU frequency drops, such increase is always small

when the CPU frequency drops from 216MHz to 64MHz, due to its

lightweight feature exactor and Local NN. Comparatively, existing

schemes suffer much higher performance degradation by running

an expensive Local NN at the embedded device. For example, infer-

ence latency of MCUNet, SPINN and DeepCOD increased by 250%,

200% and 210%, respectively.
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Figure 23: The impact of different wireless bandwidths

7.6 Impact of Network Bandwidth

Due to local constraints on power consumption and form factor,

not all the embedded devices are equipped with high-speed WiFi

modules. Instead, many of themhave to use narrowband low-energy

radios such as Bluetooth. Results in Figure 23 show that even when

the available wireless network bandwidth is only 270kbps (95.5%

lower than that of WiFi), AgileNN’s high feature sparsity ensures

that it can still restrain the NN inference latency to be 50ms on the

SVHN dataset and 100ms on the CIFAR-100 dataset. In contrast, the

inference latency of DeepCOD and SPINN is largely dependent on

the wireless network bandwidth. These results imply that AgileNN

outperforms other existing approaches in dynamic conditions of

the wireless link connecting the local device and the server.

7.7 Choices of XAI techniques

The accuracy of importance evaluation varies with different XAI

tools being used. To study such impact, we use two popular XAI

tools: Gradient Saliency (GS) [16] and Integrated Gradients (IG)

[59] to construct AgileNN. As shown in Figure 24, the performance

of AgileNN remains stable with different XAI choices. IG makes

210



ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia Kai Huang and Wei Gao

CIFAR-100 SVHN
60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

Gradient Saliency
Integrated Gradients

(a) Inference accuracy

CIFAR-100 SVHN
0

5

10

15

20

25

E
n

d
-t

o
-e

n
d

 la
te

n
cy

 (
m

s)

Gradient Saliency
Integrated Gradients

(b) End-to-end latency

Figure 24: Different XAI techniques

AgileNN perform slightly better because it aggregates more inter-

polations of NN outputs’ gradients as described in Section 2.2. On

the other hand, IG is more computationally expensive because it

usually requires 20-100 times of gradient computations to obtain

each importance measurement.

8 RELATEDWORK

AI Attribution. AgileNN leverages current NN attribution tools

to evaluate feature importance. Traditional attribution approaches

apply random permutation [12] or zero masks [53] to specific in-

put variables, and use the induced output variation to empirically

indicate importance. Attention-based approaches [61, 68] embed

a learning-based weighting layer into the NN, and the learned

weights are used to indicate feature importance. However, these

measurements are sensitive to different NN structures and cannot

always ensure accurate evaluation.

Recent XAI techniques provide more accurate and robust at-

tribution tools [56, 59]. They adopt NN output’s gradients with

respect to the input variables to derive importance, which is more

fine-grained and can clearly tell in percentage how much each in-

put variable contributes to the output value. XAI techniques are

mainly used for analyzing data characteristics and understanding

NN behavior, but its usage for improving offloading efficiency is

rarely explored by the existing work.

On-device NN Inference. AgileNN is related to existing efforts

on building lightweight NN models. NN compression [18, 25] and

pruning [21, 27, 51] tailor complicated NNs by removing redun-

dant weights and structures. Neural Architecture Search (NAS)

[10, 44] pushes it to the theoretical limit by searching for the opti-

mal NN structure under the NN complexity constraint. In certain

circumstances where wireless connectivity is unavailable at the

local embedded device and local inference is hence the only option,

these techniques could be useful to support some simple NN infer-

ence tasks with low performance requirements. However, due to

the extreme resource constraints on weak embedded devices, these

techniques have limited capability in supporting more complicated

NN inferences or achieving real-time NN inference.

AgileNN is also related to recent work of NN offloading. Early

efforts transmit the compressed raw data to the server [45, 46]. To

improve data compressibility, later work adopts a local NN that

transforms the raw data into sparse features [20, 39, 42, 65], but the

local NN should be complicated to ensure feature sparsity. Being

orthogonal to AgileNN, there is work [30, 67] choosing to offload

data to multiple servers to explore the heterogeneity of servers’

computing power.

9 DISCUSSIONS

Reducing the training overhead. Using XAI to evaluate the fea-

ture importance is computationally expensive, due to frequent com-

putation of gradients in every training iteration. A straightforward

mitigation is to reduce the amount of such gradient computations,

but this may affect the quality of skewness manipulation. Alterna-

tively, since standard NN training also involves gradient operations,

it’s possible to reuse these existing gradients to speed up XAI evalua-

tion. We also expect the AI community to develop more lightweight

XAI techniques in the near future.

Extreme network conditions. As shown in Figure 23, AgileNN

outperforms the existing schemes when the available network band-

width is low. If the network is unavailable or encounters strong

interference, AgileNN can still rely on the local predictor to make

basic decisions. Because themost important features are undertaken

by the local predictor, AgileNN makes the best effort to maintain

inference accuracy. It is also viable to deploy more complicated local

predictors to improve accuracy under such extreme conditions.

Other inference tasks. In evaluations of this paper, we mainly

target image recognition tasks, but AgileNN can also be applied to

other inference tasks such as video and audio analytics. In particular,

due to the limit memory capacity at weak embedded devices, it

may be difficult to take the entire video as one NN input (e.g., video

summarization) if the video size is large, but instead the video

could be split and analyzed in segments. Each video segment, then,

can be processed in a per-frame basis on the local device, and the

video analytic task hence falls back to an image recognition task.

Similarly, audio data can be converted into a 2D spectrum, which

can be treated as images for NN inference.

Offloading assisted training. Although AgileNN speeds up the

AI inference on weak devices, it is hard for static NN models to

adopt to new data and different application scenarios. Instead, the

NN model should be promptly retrained at run-time with the new

incoming data, while incurring the minimum computation costs.

AgileNN can be possibly extended to online training by incorporat-

ing a federated learning framework [37], where multiple clients talk

to a server without exposing local data. In this case, intermediate

training results are forwarded to the server, which will then under-

take majority of training overhead. Such extension of AgileNN will

be our future work.

10 CONCLUSION

In this paper, we present AgileNN, a new technique that shifts the

rationale of NN partitioning and offloading from fixed to agile and

data-centric by leveraging the XAI techniques. AgileNN ensures

real-time and accurate NN inference on extremely weak devices by

migrating the required computations in NN offloading from online

inference to offline training, and reduces the NN inference latency

by up to 6× with similar accuracy compared to existing schemes.
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